
 
Module – I  

1.1 WHAT IS A SIGNAL 

We are all immersed in a sea of signals. All of us from the smallest living 

unit, a cell, to the most complex living organism (humans) are all time receiving 

signals and are processing them. Survival of any living organism depends upon 

processing the signals appropriately. What is signal? To define this precisely is 

a difficult task. Anything which carries information is a signal. In this course we 

will learn some of the mathematical representations of the signals, which has 

been found very useful in making information processing systems. Examples of 

signals are human voice, chirping of birds, smoke signals, gestures (sign 

language), fragrances of the flowers. Many of our body functions are regulated 

by chemical signals, blind people use sense of touch. Bees communicate by 

their dancing pattern. Some examples of modern high speed signals are the 

voltage charger in a telephone wire, the electromagnetic field emanating from a 

transmitting antenna, variation of light intensity in an optical fiber. Thus we see 

that there is an almost endless variety of signals and a large number of ways in 

which signals are carried from on place to another place. In this course we will 

adopt the following definition for the signal: A signal is a real (or complex) 

valued function of one or more real variable(s).When the function depends on a 

single variable, the signal is said to be one dimensional. A speech signal, daily 

maximum temperature, annual rainfall at a place, are all examples of a one 

dimensional signal. When the function depends on two or more variables, the 

signal is said to be multidimensional. An image is representing the two 

dimensional signal, vertical and horizontal coordinates representing the two 

dimensions. Our physical world is four dimensional (three spatial and one 

temporal). 

 

1.2 CLASSIFICATION OF SIGNALS 

 

As mentioned earlier, we will use the term signal to mean a real or 

complex valued function of real variable(s). Let us denote the signal by x(t). 

The variable t is called independent variable and the value x of t as dependent 

variable. We say a signal is continuous time signal if the independent variable t 

takes values in an interval. For example t ϵ (−∞, ∞), or tϵ [0, ∞] or t ϵ[T0, T1]. 

The independent variable t is referred to as time, even though it may not be 

actually time. For example in variation if pressure with height t refers above 



mean sea level. When t takes vales in a countable set the signal is called a 

discrete time 

signal. For example 

t ϵ{0, T, 2T, 3T, 4T, ...} or t ϵ{...−1, 0, 1, ...} or t ϵ{1/2, 3/2, 5/2, 7/2, ...} etc. 

For convenience of presentation we use the notation x[n] to denote discrete time 

signal. Let us pause here and clarify the notation a bit. When we write x(t) it has 

two meanings. One is value of x at time t and the other is the pairs(x(t), t) 

allowable value of t. By signal we mean the second interpretation. To keep this 

distinction we will use the following notation: {x(t)} to denote the continuous 

time signal. Here {x(t)} is short notation for {x(t), t ϵ I} where I is the set in 

which t takes the value. Similarly for discrete time signal we will use the 

notation {x[n]}, where {x[n]} is short for {x[n], n_I}. Note that in {x(t)} and 

{x[n]} are dummy variables i.e. {x[n]} and {x[t]} refer to the same signal. Some 

books use the notation x[·] to denote {x[n]} and x[n] to denote value of x at time 

n · x[n] refers to the whole waveform, while x[n] refers to a particular value. 

Most of the books do not make this distinction clean and use x[n] to denote 

signal and x[n] to denote a particular value. 

As with independent variable t, the dependent variable x can take values 

in a continues set or in a countable set. When both the dependent and 

independent variable take value in intervals, the signal is called an analog 

signal. When both the dependent and independent variables take values in 

countable sets (two sets can be quite different) the signal is called Digital signal. 

When we use digital computers to do processing we are doing digital signal 

processing. But most of the theory is for discrete time signal processing where 

default variable is continuous. This is because of the mathematical simplicity of 

discrete time signal processing. Also digital signal processing tries to implement 

this as closely as possible. Thus what we study is mostly discrete time signal 

processing and what is really implemented is digital signal processing. 
 

1.3 ELEMENTARY SIGNALS 
 

There are several elementary signals that feature prominently in the study 

of digital signals and digital signal processing. 

(a)Unit sample sequence δ[n]: Unit sample sequence is defined by 

 

 

 

 

 

 



Unit sample sequence is also known as impulse sequence. This plays role akin 

to the impulse function δ(t) of continues time. The continues time impulse δ(t) 

is purely a mathematical construct while in discrete time we can actually 

generate the impulse sequence. 

(b)Unit step sequence u[n]: Unit step sequence is defined by 

 

(c) Exponential sequence: The complex exponential signal or sequence x[n] 

is defined by   x[n] = C α
n
 

   where C and α are, in general, complex numbers.  

Real exponential signals: If C and α are real, we can have one of the several 

type of behaviour  illustrated below 

 

 

 



2. SIMPLE OPERATIONS AND PROPERTIES OF 

SEQUENCES 
 

2.1 Simple operations on signals 

In analyzing discrete-time systems, operations on sequences occur frequently. 

Some operations are discussed below. 

 

2.1.1 Sequence addition: 

Let {x[n]} and {y[n]} be two sequences. The sequence addition is defined as 

term by term addition. Let {z[n]} be the resulting sequence 

{z[n]} = {x[n]} + {y[n]}, where each term z[n] = x[n] + y[n] 

We will use the following notation 

{x[n]} + {y[n]} = {x[n] + y[n]} 

 

2.1.2 Scalar multiplication: 

Let a be a scalar. We will take a to be real if we consider only the real valued 

signals, and take a to be a complex number if we are considering complex 

valued sequence. Unless otherwise stated we will consider complex valued 

sequences. Let the resulting sequence be denoted by w[n] 

{w[n]} = ax[n] is defined by w[n] = ax[n], each term is multiplied by a 

We will use the notation aw[n] = aw[n] 

Note: If we take the set of sequences and define these two operators as addition 

and scalar multiplication they satisfy all the properties of a linear vector space. 

 

2.1.3 Sequence multiplication: 

Let {x[n]} and {y[n]} be two sequences, and {z[n]} be resulting sequence 

{z[n]} = {x[n]}{y[n]}, where z[n] = x[n]y[n]. The notation used for this will be 

{x[n]}{y[n]} = {x[n]y[n]} 

Now we consider some operations based on independent variable n. 

 

2.1.4 Shifting 

This is also known as translation. Let us shift a sequence {x[n]} by n0 units, 

and the resulting sequence by {y[n]} 

{y[n]} = z−n0({x[n]}) 

where z−n0()is the operation of shifting the sequence right by n0 unit. The 

terms are defined by y[n] = x[n−n)]. We will use short notation {x[n−n0]} 



 

2.1.5 Reflection: 

Let {x[n]} be the original sequence, and {y[n]} be reflected sequence, then y[n] 

is defined by y[n] = x[−n] 

 

 



We will denote this by {x[n]}. When we have complex valued signals, 

sometimes we reflect and do the complex conjugation, ie, y[n] is defined by y[n] 

= x  * [−n], where * denotes complex conjugation. This sequence will be 

denoted by {x * [−n]}. 

 

We will learn about more complex operations later on. Some of these 

operations commute, i.e. if we apply two operations we can interchange their 

order and some do not commute. For example scalar multiplication and 

reflection. 

 

 

 



 

2.2 SOME PROPERTIES OF SIGNALS: 
 

2.2.1 Energy of a Signal: 

The total enery of a signal {x[n]} is defined by 

 
A signal is reffered to as an energy signal, if and only if the total energy of 

the signal Ex is finite. An energy signal has a zero power and a power signal has 

infinite energy. There are signals which are neither energy signals nor power 

signals. For example {x[n]} defined by x[n] = n does not have finite power or 

energy 

 

2.2.2 Power of a signal: 

If {x[n]} is a signal whose energy is not finite, we define power of the signal 



 
 

 

 

 

 

 

 

 

 

2.2.3 Periodic Signals: 

An important class of signals that we encounter frequently is the class of 

periodic signals. We say that a signal {x[n]} is periodic period N, where N is a 

positive integer, if the signal is unchanged by the time shift of N ie.,  

 
 

Generalizing this we get {x[n]} = {x[n+kN]}, where k is a positive integer. From 

this we see that {x[n]} is periodic with 2N, 3N, ..... The fundamental period N0 is 

the smallest positive value N for which the signal is periodic. The signal 

illustrated below is periodic with fundamental period N0 = 4. {x[n]} By change 

of variable we can write {x[n]} = {x[n +N]} as {x[m − N]} = {x[m]} and then we 

see that 

 
for all integer values of k, positive, negative or zero. By definition, period of 

a signal is always a positive integer n. Except for a all zero signal all periodic 

signals have infinite energy. They may have finite power. Let {x[n]} be periodic 

with period N, then the power Px is given by 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2.4 Even and odd signals: 

 

A real valued signal {x[n]} is referred as an even signal if it is identical to its 

time reversed counterpart ie, if {x[n]} = {x[−n]} A real signal is referred to as an 

odd signal if {x[n]} = {−x[−n]} An odd signal has value 0 at n = 0 as 

 x[0] = −x[n] = −x[0] 

 

 
 



The signal {x[n]} is called the even part of {x[n]}. We can verify very easily that 

{xe[n]} is an even signal. Similarly, {x0[n]} is called the odd part of {x[n]} and is 

an odd signal. When we have complex valued signals we use a slightly different 

terminology. A complex valued signal {x[n]} is referred to as a conjugate 

symmetric signal if {x[n]} = {x*[−n], where x*refers to the complex conjugate 

of x.  Here we do reflection and complex conjugation. If {x[n]} is real valued 

this is same as an even signal. A complex signal {x[n]} is referred to as a 

conjugate antisymmetric signal if {x[n]} = {−x*[−n]}. We can express any 

complex valued signal as sum conjugate symmetric and conjugate 

antisymmetric signals. We use notation similar to above Ev({x[n]}) = {xe[n]} = 

{1/2(x[n] + x*[−n])} and Od({x[n]}) = {x0[n]} = {1/2(x[n] − x∗ [−n])} then 

{x[n]} = {xe[n]} + {xo[n]}. We can see easily that {xe[n]} is conjugate symmetric 

signal and {xo[n]} is conjugate antisymmetric signal. These definitions reduce to 

even and odd signals in case signalstakes only real values. 

 

2.3 PERIODICITY PROPERTIES OF SINUSOIDAL SIGNALS 
 

Let us consider the signal {x[n]} = {cosw0n}. We see that if we replace w0 

by (w0 + 2π) we get the same signal. In fact the signal with frequency w0}2π 

,w0}4π and so on. This situation is quite different from continuous time signal 

{cosw0t,−∞ < t <∞} where each frequency is different. Thus in discrete time we 

need to consider frequency interval of length 2π only. As we increase w; 0 to π 

signal oscillates more and more rapidly. But if we further increase frequency 

from π to 2π the rate of oscillations decreases. This can be seen easily by 

plotting signal cosw0n} for several values of w0. The signal {cosw0n} is not 

periodic for every value of w0. For the signal to be periodic with period N >0, 

we should have 

 

 

 

 

 

 

 

 

 

Thus signal {cosw0n} is periodic if and only if w0=2π is a rational number. 

Above observations also hold for complex exponential signal {x[n]} = {e
jw

0
n
} 

 

 

 

 

 



2.3.1.Discrete-Time Systems 

 

A discrete-time system can be thought of as a transformation or operator 

that maps an input sequence {x[n]} to an output sequence {y[n]} 

 

 

 

 

By placing various conditions on T(・) we can define different classes of  

systems. 

 

3.BASIC SYSTEM PROPERTIES 

 
3.1 Systems with or without memory: 

 

A system is said to be memory less if the out put for each value of the 

independent variable at a given time n depends only on the input value at time 

n. For example system specified by the relationship y[n] = cos(x[n]) + z is 

memory less. A particularly simple memory less system is the identity system  

defined by y[n] = x[n] In general we can write input-output relationship for 

memory less system as y[n] = g(x[n]). Not all systems are memory less. A 

simple example of system with memory is a delay defined by y[n] = x[n − 1] 

A system with memory retains or stores information about input values at 

times other than the current input value. 

 

3.2 Inevitability 

A system is said to be invertible if the input signal {x[n]} can be 

recovered from the output signal {y[n]}. For this to be true two different input 

signals should produce two different outputs. If some different input signal 

produce same output signal then by processing output we can not say which 

input produced the output. Example of an invertible system is 

 

 

 

 

 

 

 

 

 

 



That is the system produces an all zero sequence for any input sequence. Since 

every input sequence gives all zero sequence, we can not find out which input 

produced the output. The system which produces the sequence {x[n]} from 

sequence {y[n]} is called the inverse system. In communication system, decoder 

is an inverse of the encoder. 

 

3.3 Causality 

 

A system is causal if the output at anytime depends only on values of the 

input at the present time and in the past. y[n] = f(x[n], x[n − 1], ...). All memory 

less systems are causal. An accumulator system defined by  

 
 

For real time system where n actually denoted time causalities is important. 

Causality is not an essential constraint in applications where n is not time, for 

example, image processing. If we case doing processing on recorded data, then 

also causality may not be required. 

 

3.4 Stability 

 

There are several definitions for stability. Here we will consider bounded 

input bonded output(BIBO) stability. A system is said to be BIBO stable if 

every bounded input produces a bounded output. We say that a signal {x[n]} is 

bounded if 

 

 

 

 

 

 

 

 

 

 

 



3.5 Time invariance 

 

A system is said to be time invariant if the behaviour and characteristics 

of the system do not change with time. Thus a system is said to be time 

invariant if a time delay or time advance in the input signal leads to identical 

delay or advance in the output signal. Mathematically if 

 

 
 

and so the system is not time-invariant. It is time varying. We can also see this 

by giving a counter example. Suppose input is {x[n]} = {δ[n]} then output is all 



zero sequence. If the input is {δ[n−1]} then output is {δ[n−1]} which is 

definitely not a shifted version version of all zero sequence. 

 

 

 

3.6 Linearity 

 

This is an important property of the system. We will see later that if we 

have system which is linear and time invariant then it has a very compact 

representation. A linear system possesses the important property of super 

position: if an input consists of weighted sum of several signals, the output is 

also weighted sum of the responses of the system to each of those input signals. 

Mathematically let {y1[n]} be the response of the system to the input {x1[n]} and 

let {y2[n]} be the response of the system to the input {x2[n]}. Then the system is 

linear if: 

1. Additivity: The response to {x1[n]} + {x2[n]} is {y1[n]} + {y2[n]} 

2. Homogeneity: The response to a{x1[n]} is a{y1[n]}, where a is any real 

number if we are considering only real signals and a is any complex number if 

we are considering complex valued signals. 

3. Continuity: Let us consider {x1[n]}, {x2[n]}, ...{xk[n]}... be countably infinite 

number of signals such that 

lim{ xk[n]} = {x[n]} Let the corresponding output signals be denoted by {yn[n]}  

k→∞ 

and Lim { yn[n]} ={y[n]} We say that system processes the continuity property 

k→∞ 

if the response of the system to the limiting input {x[n]} is limit of the responses 

{y[n]}.  

T( lim{ xk[n]}) = lim T({Xk[n]}) 

        k→∞k→∞ 

The additive and continuity properties can be replaced by requiring that We say 

that system posseses the continuity property system is additive for countably 

infinite number if signals i.e. response to{x1[n]}+{x2[n]}+...+{xn[n]}+... is 

{y1[n]}+{y2[n]}+...+{yk[n]}+....Most of the books do not mention the continuity 

property. They state only finite additivity and homogeneity. But from finite 

additivity we can not deduce c....... additivity. This distinction becomes very 

important in continuous time systems. A system can be linear without being 

time invariant and it can be time invariant without being linear. If a system is 

linear, an all zero input sequence will produce a all zero output sequence. Let 



{0} denote the all zero sequence ,then {0} = 0.{x[n]}. If T({x[n]} = {y[n]}) then 

by homogeneity property T(0.{x[n]}) = 0.{y[n]} 

                                  T({0}) = {0} 

Consider the system defined by 

                                y[n] = 2x[n] + 3 

This system is not linear. This can be verified in several ways. If the input is all 

zero sequence {0}, the output is not an all zero sequence. Although the defining 

equation is a linear equation is x and y the system is nonlinear. The output of 

this system can be represented as sum of a linear system and another signal 

equal to the zero input response. In this case the linear system is y[n] = 2x[n] 

and the zero-input response is y0[n] = 3 for all n 

 

 

 

 

 

systems correspond to the class of incrementally linear system. System is linear 

in term of difference signal i.e if we define {xd[n]} = {x1[n]} − {X2[n]}and 

{yd[n]} = {y1[n]} − {y2[n]}. Then in terms of {xd[n]} and {yd[n]} the system is 

linear. 

 

 

4. MODELS OF THE DISCRETE-TIME SYSTEM 

First let us consider a discrete-time system as an interconnection of only 

three basic components: the delay elements, multipliers, and adders. The input–

output relationships for these components and their symbols are shown in 

Figure below. The fourth component is the modulator, which multiplies two or 

more signals and hence performs a nonlinear operation.  



 

The basic components used in a discrete-time system. 

A simple discrete-time system is shown in Figure 5, where input signal x(n)= 

{x(0), x(1), x(2), x(3)} is shown to the left of v0(n)= x(n). The signal v1(n)shown 

on the left is the signal x(n)delayed by T seconds or one sample, so, v1(n)= x(n − 

1). Similarly, v(2)and v(3)are the signals obtained from x(n)when it is delayed 

by 2T and 3T seconds: v2(n)= x(n − 2)and v3(n)= x(n − 3). When we say that the 

signal x(n)is delayed by T, 2T , or 3T seconds, we mean that the samples of the 

sequence are present T, 2T, or 3T seconds later, as shown by the plots of the 

signals to the left of v1(n), v2(n), and v3(n). But at any given time t = nT , the 

samples in v1(n), v2(n), and v3(n) are the samples of the input signal that occur T, 

2T , and 3T seconds previous to t= nT . For example, at t = 3T , the value of the 

sample in x(n)is x(3), and the values present in v1(n), v2(n)and v3(n)are x(2), 

x(1), and x(0), respectively. 

A good understanding of the operation of the discrete-time system as illustrated 

in above Figure   is essential in analyzing, testing, and debugging the operation 

of the system when available software is used for the design, simulation, and 

hardware implementation of the system. 

It is easily seen that the output signal in above  Figure  is 



 

where b(0), b(1), b(2), b(3)are the gain constants of the multipliers. It is also 

easy to see from the last expression that the output signal is the weighted sum of 

the current value and the previous three values of the input signal. So this gives 

us an input–output relationship for the system shown in below 

 

 

Operations in a typical discrete-time system. 

Now we consider another example of a discrete-time system, shown in Figure 5. 

Note that a fundamental rule is to express the output of the adders and generate 

as many equations as the number of adders found in this circuit diagram for the 

discrete-time system. (This step is similar to writing the node equations for an 



analog electric circuit.) Denoting the outputs of the three adders as y1(n), y2(n), 

and y3(n), we get 

 

Schematic circuit for a discrete-time system. 

 

These three equations give us a mathematical model derived from the model 

shown in above  that is schematic in nature. We can also derive (draw the circuit 

realization) the model shown in Figure 5 from the same equations given above. 

After eliminating the internal variables y1(n)and y2(n); that relationship 

constitutes the third model for the system. The general form of such an input–

output relationship is 

 

or in another equivalent form 

Eq(1) 



 

Eq(1) shows that the output y(n)is determined by the weighted sum of the 

previous N values of the output and the weighted sum of the current and 

previous M + 1 values of the input. Very often the coefficient a(0)as shown in 

Eq(2) is normalized to unity. 

5. LINEAR TIME-INVARIANT, CAUSAL SYSTEMS 
In this section, we study linear time-invariant causal systems and focus on 

properties such as linearity, time invariance, and causality. 

 

5.1 Linearity: 

A linear system is illustrated in below figure, where y1(n) is the system output 

using an input x1(n), and y2(n) is the system output using an input x2(n). This  

Figure illustrates that the system output due to the weighted sum inputs αx1(n) + 

βx2(n) is equal to the same weighted sum of the individual outputs obtained 

from their corresponding inputs, that is 

   y(n)=αy1(n) + βy2(n)  

where  α and β are constants. 

For example, assuming a digital amplifier as y(n)=10x(n), the input is 

multiplied by 10 to generate the output. The inputs x1(n) = u(n) and x2(n) =δ(n) 

generate the outputs y1(n) =10u(n) and y2(n) = 10δ(n), respectively. If, as 

described in below Figure , we apply to the system using the combined input 

x(n), where the first input is multiplied by a constant 2 while the second input is 

multiplied by a constant 4, x(n) = 2x1(n) + 4x2(n) =2u(n) + 4δ(n), 

 

 
 

 

 

Eq(2) 



5.2 Time Invariance 

A time-invariant system is illustrated in Figure below, where y1(n) is the system 

output for the input x1(n). Let x2(n) = x1(n - n0) be the shifted version of x1(n) 

 

 
 

by n0 samples. The output y2(n) obtained with the shifted input x2(n) =x1(n - 

n0)is equivalent to the output y2(n) acquired by shifting y1(n) by n0 

samples,y2(n) =y1(n - n0).This can simply be viewed as the following. If the 

system is time invariant and y1(n) is the system output due to the input 

x1(n),then the shifted system input x1(n -n0) will produce a shifted system output 

y1(n - n0)by the same amount of time n0. 

 

5.3 Differential Equations and Impulse Responses: 

A causal, linear, time-invariant system can be described by a difference 

equation having the following general form: 

y(n) + a1y(n - 1) + . . . + aNy(n - N) = b0x(n) + b1x(n -1) + . . . + bMx(n -M) 

where a1, . . . , aN and b0, b1, . . . , bM are the coefficients of the difference 

equation. It can further be written as 

y(n) = - a1y(n - 1) -. . . - aNy(n - N)+ b0x(n) + b1x(n - 1) + . . . + bMx(n -M) 

 

6. FOURIER SERIES COEFFICIENTS OF PERIODIC IN DIGITAL 

SIGNALS: 

Let us look at a process in which we want to estimate the spectrum of a periodic 

digital signal x(n) sampled at a rate of fs Hz with the fundamental period T0 = 



NT, as shown in below, where there are N samples within the duration of the 

fundamental period and T = 1/fs is the sampling period. For the time being, we 

assume that the periodic digital signal is band limited to have all harmonic 

frequencies less than the folding frequency fs=2 so that aliasing does not occur. 

According to Fourier series analysis (Appendix B), the coefficients of the 

Fourier series expansion of a periodic signal x(t) in a complex form is  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Therefore, the two-sided line amplitude spectrum jckj is periodic, as shown in 

Figure 4.3. We note the following points: 

a. As displayed in Figure 4.3, only the line spectral portion between the 

frequency fs=2 and frequency fs=2 (folding frequency) represents the frequency 

information of the periodic signal. 

 

 

 

 

 

 

 

 

 



 

 

 

b. Notice that the spectral portion from fs=2 to fs is a copy of the spectrum in 

the negative frequency range from _fs=2 to 0 Hz due to the spectrum being 

periodic for every Nf0 Hz. Again, the amplitude spectral components indexed 

from fs=2 to fs can be folded at the folding frequency fs=2 to match the 

amplitude spectral components indexed from 0 to fs=2 in terms of fs _ f Hz, 

where f is in the range from fs=2 to fs. For convenience, we compute the 

spectrum over the range from 0 to fs Hz with nonnegative indices, that is, 

 

 

 

c. For the kth  harmonic, the frequency is  f = kf0 Hz. The frequency spacing 

between the consecutive spectral lines, called the frequency resolution, is f0 Hz 

 

7. Discrete Fourier Transform  

 

Now, let us concentrate on development of the DFT. In below Figure 

shows one way to obtain the DFT formula. First, we assume that the process 

acquires data samples from digitizing the interested continuous signal for a 

duration of T seconds. Next, we assume that a periodic signal x(n) is obtained 

by copying the acquired N data samples with the duration of T to itself 

repetitively. Note that we assume continuity between the N data sample frames. 

This is not true in practice. We will tackle this problem in Section 4.3. We 

determine the Fourier series coefficients using one-period N data samples and 

Equation (4.5). Then we multiply the Fourier series coefficients by a factor of N 

to obtain 

 

 

 

 

where X(k) constitutes the DFT coefficients. Notice that the factor of N is a 

constant and does not affect the relative magnitudes of the DFT coefficients 

X(k). As shown in the last plot, applying DFT with N data samples of x(n) 

sampled at a rate of fs (sampling period is T = 1/fs) produces N complex DFT 

 



 
 

As we know, the spectrum in the range of -2 to 2 Hz presents the information of 

the sinusoid with a frequency of 1 Hz and a peak value of 2|c1| = 1, which is 

converted from two sides to one side by doubling the spectral value. Note that 

we do not double the direct-current (DC) component, that is, c0. 
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Analog 
System 

Re-Sample 
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Reconstruct 

Z-Transform 

8.1Introduction 

A linear system can be represented in the complex frequency domain (s-

domain here s =  + j) using the LaPlace Transform. 

 

Where the direct transform is: 
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And x(t) is assumed zero for t ≤ 0. The Inversion integral is a contour integral in 

the complex plane (seldom used, tables are used instead) 
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Where  is chosen such that the contour integral converges. If we now assume 

that x(t) is ideally sampled as in: 
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Analyzing this equivalent system using standard analog tools will establish the 

z-Transform. 

4.2 Sampling 

Substituting the Sampled version of x(t) into the definition of the LaPlace 

Transform we get 
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H(s) 

x(t)  y(t) = x(t) * h(t)    

X(s) Y(s) = X(s)H(s) 

x(t) y(t) x(t, Ts) 



Therefore 
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Now interchanging the order of integration and summation and using the sifting 

property of -functions 
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  (We are assuming that the first sample occurs at 

t = 0+) 

if we now adjust our nomenclature by letting: 

z = 
sT

 , x(n*Ts) = xn , and   sTzT sXzX


)(  

  n

n

nzxzX 





0  

4.3 Which is the direct z-transform (one-sided; it assumes xn = 0 for n < 0). 

The inversion integral is: 
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j
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cn

1

2

1

  (This is a contour integral in the complex z-plane) 

(The use of this integral can be avoided as tables can be used to invert the 

transform.) 

To prove that these form a transform pair we can substitute one into the other. 
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Now interchanging the order of summation and integration (valid if the contour 

followed stays in the region of convergence): 
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If “C” encloses the origin (that‟s where the pole is), the Cauchy Integral 

theorem says: 
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4.4 Properties of the z transform 

For the following 
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 Linearity: 

Z{afn+ bgn} = aF(z) + bG(z).  and ROC is RfRg 

which follows from definition of z-transform. 

 

 Time Shifting 

If we have    zFnf   then    zFznnf
n0

0


  

The ROC of Y(z) is the same as F(z) except that there are possible pole 

additions or deletions at z = 0 or z = . 

 

Proof: 
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Assume k = n- n0 then n=k+n0, substituting in the above equation we have: 
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 Multiplication by an Exponential Sequence 
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The consequence is pole and zero locations are scaled by z0. If the ROC of 

FX(z) is rR< |z| <rL, then the ROC of Y(z) is 

rR< |z/z0| <rL, i.e., |z0|rR< |z| < |z0|rL 



 

Proof: 
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The consequence is pole and zero locations are scaled by z0. If the ROC of X(z) 

is rR<|z|<rL, then the ROC of Y(z) is 

rR < |z/z0| <rL, i.e., |z0|rR < |z| < |z0|rL 

 

 Differentiation of X(z) 

If we have    zFnf   then  
 
z

zdF
zznnf   and ROC = Rf 

 

 

Proof: 
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 Conjugation of a Complex Sequence 

If we have    zFnf   then      zFznf  and ROC = Rf 

Proof: 

Let y[n] = f
 *
 [n], then 

        











 







  zFznfznfzY

n

n

n

n  

 



 Time Reversal 

If we have    zFnf   then      zFznf 1  
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When the time reversal is without conjugation, it is easy to show 
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A comprehensive summery for the z-transform properties is shown in Table 2 

 

Table 2 Summery of z-transform properties 

 



Example 3: Find the z transform of 3n + 2 × 3
n
. 

 

SolutionFrom the linearity property 

Z{3n + 2 × 3
n
} = 3Z{n} + 2Z{3

n
} 

and from the Table 1 
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with r = 3). Therefore 

Z{3n + 2 × 3
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Example 4: Find the z-transform of each of the following sequences: 

(a) x(n)= 2
n
u(n)+3(½)

n
u(n) 

(b) x(n)=cos(n 0)u(n). 

Solution: 

(a) Because x(n) is a sum of two sequences of the form  n
u(n), using the 

linearity property of the z-transform, and referring to Table 1, the z-

transform pair 

 
  



























1

1

1
1

2

1
121

2

13
4

2

1
1

3

21

1

zz

z

zz
zX  

(b) For this sequence we write 

x(n) = cos(n 0) u(n) = ½(e
 jn 0

 + e
 -jn 0

) u(n) 

 

Therefore, the z-transform is 
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with a region of convergence |z| >1. Combining the two terms together, we have 
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4.5 The Inverse z-Transform 

The z-transform is a useful tool in linear systems analysis. However, just as 

important as techniques for finding the z-transform of a sequence are methods 

that may be used to invert the z-transform and recover the sequence x(n)from 

X(z). Three possible approaches are described below. 

 

 Partial Fraction Expansion 

For z-transforms that are rational functions of z, 

 

a simple and straightforward approach to find the inverse z-transform is to 

perform a partial fraction expansion of X(z). Assuming that p >q, and that all of 

the roots in the denominator are simple,  i k for ik, X(z) may be expanded as 

follows: 

 

for some constants Ak for k = 1,2, . . . , p. The coefficients Ak may be found by 

multiplying both sides of Eq. (3) by (1 -  kz
1

) and setting z =  k . The result is 

 

 

If pq, the partial fraction expansion must include a polynomial in z
1

of order 

(p-q). The coefficients of this polynomial may be found by long division (i.e., 

by dividing the numerator polynomial by the denominator). For multiple-order 

poles, the expansion must be modified. For example, if X(z) has a second-order 

pole at z =  k, the expansion will include two terms, 

Eq(3) 



 

where B1,and B2are given by 

 

 

Example 5: Suppose that a sequence x(n)has a z-transform 

 

 

Solution: 

With a region of convergence |z|> ½ . Because p = q = 2, and the two poles are 

simple, the partial fraction expansion has the form 

 

The constant C is found by long division: 

 

Therefore, C = 2 and we may write X(z) as follows: 

 

Next, for the coefficients A1and A2we have 

 



and 

 

Thus, the complete partial fraction expansion becomes 

 

Finally, because the region of convergence is the exterior of the circle |z| > 1, 

x(n) is the right-sided sequence 

 

 

 Power Series 

The z-transform is a power series expansion, 

 

where the sequence values x(n)are the coefficients of z
 -n

 in the expansion. 

Therefore, if we can find the power series expansion for X(z), the sequence 

values x(n)may be found by simply picking off the coefficients of z
 –n

. 

 

Example 6: Consider the z-transform 

 

 

Solution: 

The power series expansion of this function is 

 

Therefore, the sequence x(n) having this z-transform is 



 

 

 Contour Integration 

Another approach that may be used to find the inverse z-transform of X(z) is to 

use contour integration. This procedure relies on Cauchy's integral theorem, 

which states that if C is a closed contour that encircles the origin in a 

counterclockwise direction, 

 

With 

 

Cauchy's integral theorem may be used to show that the coefficients x(n) may 

be found from X(z) as follows: 

 

where Cis a closed contour within the region of convergence of X(z) that 

encircles the origin in a counterclockwise direction. Contour integrals of this 

form may often by evaluated with the help of Cauchy's residue theorem, 

 

If X(z) is a rational function of z with a first-order pole at z =  k, 

 

 

 

 



Contour integration is particularly useful if only a few values of x(n) are 

needed. 

 

Example 7: 

Find the inverse of each of the following z-transforms: 

 

Solution: 

a) Because X(z) is a finite-order polynomial, x(n) is a finite-length sequence. 

Therefore, x(n) is the coefficient that multiplies z
-1

 in X(z). Thus, x(0) = 4 

and x(2) = x(-2) = 3. 

b) This z-transform is a sum of two first-order rational functions of z. 

Because the region of convergence of X(z) is the exterior of a circle, x(n) 

is a right-sided sequence. Using the z-transform pair for a right-sided 

exponential, we may invert X(z) easily as follows: 

 

c) Here we have a rational function of z with a denominator that is a 

quadratic in z. Before we can find the inverse z-transform, we need to 

factor the denominator and perform a partial fraction expansion: 

 

Because x(n) is right-sided, the inverse z-transform is 

 

d) One way to invert this z-transform is to perform a partial fraction 

expansion. With 



 

the constants A, B1, and B2are as follows: 

 

 

Inverse transforming each term, we have 

 

 

Example 7: 

Find the inverse z-transform of the second-order system 

 

 

Here we have a second-order pole at z = ½. The partial fraction expansion for 

X(z) is 

 

The constant A1 is 

 

and the constant A2 is 

 



Therefore, 

 

and 

 

 

Example 8: 

Find the inverse z-transform of X(z) = sin z. 

 

Solution 

To find the inverse z-transform of X(z) = sin z, we expand X(z) in a Taylor series 

about z = 0 as follows: 

 

Because 

 

we may associate the coefficients in the Taylor series expansion with the 

sequence values x(n). Thus, we have 

 

 

 

 

 



Example 8: 

Evaluate the following integral: 

 

where the contour of integration C is the unit circle. 

 

Solution: 

Recall that for a sequence x(n) that has a z-transform X(z), the sequence may be 

recovered using contour integration as follows: 

 

Therefore, the integral that is to be evaluated corresponds to the value of the 

sequence x(n) at n = 4 that has a z-transform 

 

Thus, we may find x(n) using a partial fraction expansion of X(z) and then 

evaluate the sequence at n = 4. With this approach, however, we are finding the 

values of x(n) for all n. Alternatively, we could perform long division and 

divide the numerator of X(z) by the denominator. The coefficient multiplying z
-4

 

would then be the value of x(n) at n = 4, and the value of the integral. However, 

because we are only interested in the value of the sequence at n = 4, the easiest 

approach is to evaluate the integral directly using the Cauchy integral theorem. 

The value of the integral is equal to the sum of the residues of the poles of 

X(z)z
3
 inside the unit circle. Because 

 

has poles at z =1/2 and z =2/3, 

 

and 



 

Therefore, we have 

 

 

 

 

PROPERTIES OF DISCRETE FOURIER TRANSFORM 

As a special case of general Fourier transform, the discrete time transform 

shares all properties (and their proofs) of the Fourier transform discussed above, 

except now some of these properties may take different forms. In the following, 

we always assume and .  

 Linearity 

 

 

 

 Time Shifting 

 

 

 

Proof: 

 

 

 



If we let , the above becomes  

 

 

 

 Time Reversal 

 

 

 

 Frequency Shifting 

 

 

 

 Differencing 

Differencing is the discrete-time counterpart of differentiation.  

 

 

 

Proof: 

    
 

  

  
 

 

  

 

 

 



 Differentiation in frequency 

 

 

 

proof: Differentiating the definition of discrete Fourier transform with 

respect to , we get  

 

 

 

  

  
 

 

  

 

 

 Convolution Theorems 

The convolution theorem states that convolution in time domain 

corresponds to multiplication in frequency domain and vice versa:  

 

 

 

 

 

 

 

Recall that the convolution of periodic signals and is  

 



 

 

Here the convolution of periodic spectra and is similarly 

defined as  

 

 

 

Proof of (a): 

 

 

 

  

  
 

 

  

  
 

 

  

Proof of (b): 

 

 

 

  

  
 

 

  

  
 

 

  

  
 

 

  

 

 

 



 Parseval's Relation 

 

 

The circular convolution, also known as cyclic convolution, of two aperiodic 

functions occurs when one of them is convolved in the normal way with a 

periodic summation of the other function.  That situation arises in the context of 

the Circular convolution theorem.  The identical operation can also be expressed 

in terms of the periodic summations of both functions, if the infinite integration 

interval is reduced to just one period.  That situation arises in the context of the 

discrete-time Fourier transform (DTFT) and is also called periodic 

convolution.  In particular, the transform (DTFT) of the product of two discrete 

sequences is the periodic convolution of the transforms of the individual 

sequences. 

For a periodic function xT, with period T, the convolution with another function, 

h, is also periodic, and can be expressed in terms of integration over a finite 

interval as follows: 

For a periodic function xT, with period T, the convolution with another function, 

h, is also periodic, and can be expressed in terms of integration over a finite 

interval as follows: 

[2]
 

where to is an arbitrary parameter, and hT is a periodic summation of h, defined 

by: 

 

This operation is a periodic convolution of functions xT and hT.  When xT is 

expressed as the periodic summation of another function, x, the same operation 

may also be referred to as a circular convolution of functions h and x. 

http://en.wikipedia.org/wiki/Discrete_Fourier_transform#Circular_convolution_theorem_and_cross-correlation_theorem
http://en.wikipedia.org/wiki/Discrete-time_Fourier_transform
http://en.wikipedia.org/wiki/Periodic_function
http://en.wikipedia.org/wiki/Convolution
http://en.wikipedia.org/wiki/Periodic_function
http://en.wikipedia.org/wiki/Convolution
http://en.wikipedia.org/wiki/Circular_convolution#cite_note-2
http://en.wikipedia.org/wiki/Periodic_summation
http://en.wikipedia.org/wiki/Periodic_summation


Discrete sequences 

Similarly, for discrete sequences and period N, we can write the circular 

convolution of functions h and x as: 

 

This corresponds to matrix multiplication, and the kernel of the integral 

transform is a circular matrix 

^ If a sequence, x[n], represents samples of a continuous function, x(t), with 

Fourier transform X(ƒ), its DTFT is a periodic summation of X(ƒ).   

^ Proof:  

 

 
 

 

 

 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/Matrix_multiplication
http://en.wikipedia.org/wiki/Circulant_matrix
http://en.wikipedia.org/wiki/Circular_convolution#cite_ref-1
http://en.wikipedia.org/wiki/Circular_convolution#cite_ref-2


Definition of the Fourier Transform 

The Fourier transform (FT) of the function f .(x) is the function F(ω) where: 

 
 

Think of it as a transformation into a different set of basis functions. The 

Fourier transform uses complex exponentials (sinusoids) of various frequencies 

as its basis functions.(Other transforms, such as Z, Laplace, Cosine, Wavelet, 

and Hartley, use different basic functions). 

A Fourier transform A Fourier transform pair is often written 

where F is the Fourier transform operator. If f .x/ is 

thought of as a signal (i.e. input data) then we call F(ω)the signal‟s spectrum. If 

f is thought of as the impulse response of a filter (which operates on input data 

to produce output data) then we call F the filter‟s frequency response. 

(Occasionally the line between what‟s signal and what‟s filter becomes blurry). 

 

Example of a Fourier Transform 

 

Suppose we want to create a filter that eliminates high frequencies but 

retains low frequencies (this is very useful in anti aliasing). In signal processing 

terminology, this is called an ideal low pass filter. So we‟ll specify a box-

shaped frequency response with cutoff frequency ω C 



 

 

 

Fourier Transform Properties 

 

 

 

 

 



 

Convolution Theorem 

The Fourier transform of a convolution of two signals is the product of their 

Fourier transforms: . The convolution of two continuous signals f 

and g is 

 
 

Delta Functions 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

DISCRETE FOURIER TRANSFORM 
 

In time domain, representation of digital signals describes the signal 

amplitude versus the sampling time instant or the sample number. However, in 

some applications, signal frequency content is very useful otherwise than as 

digital signal samples. The representation of the digital signal in terms of its 

frequency component in a frequency domain, that is, the signal spectrum, needs 

to be developed. As an example, Figure 4.1 illustrates the time domain 

representation 

of a 1,000-Hz sinusoid with 32 samples at a sampling rate of 8,000 Hz; the 

bottom plot shows the signal spectrum (frequency domain representation), 

where we can clearly observe that the amplitude peak is located at the frequency 

of 1,000 Hz in the calculated spectrum. Hence, the spectral plot better displays 

frequency information of a digital signal. 

 

The algorithm transforming the time domain signal samples to the frequency 

domain components is known as the discrete Fourier transform, or DFT. The 

DFT also establishes a relationship between the time domain representation and 

the frequency domain representation. Therefore, we can apply the DFT to 

perform frequency analysis of a time domain sequence. In addition, the DFT is 

widely used in many other areas, including spectral analysis, acoustics, 

imaging/video, audio, instrumentation, and communications systems. To be able 

to develop the DFT and understand how to use it, we first study  the spectrum of 

periodic digital signals using the Fourier series. 

 

Consider a finite duration signal )(tg  of duration T  sampled at a uniform rate st  

such that 

sNtT    where N  is an integer 0N  

Then the Fourier transform of signal is given by 
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  If we now evaluate the above integral by trapezoidal rule of integration after 

padding two zeros at the extremity on either side [signal is zero there infact, we 

obtain the following expressions. 
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The inverse DFT (IDFT) which is used to reconstruct the signal is given by: 
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If, from equation (1) we could compute complete frequency spectrum i.e. 

 ffG ),(   then (2) would imply that we can obtain Tttg 0)( . The 

fallacy in the above statement is quite obvious as we have only finite samples 

and the curve connecting any 2-samples can be 

defined plausibly in infinitely many ways (see 

fig (2)). This suggests that from (1), we should 

be able to derive only limited amount of 

frequency domain information. Since, we have 

N-data points [real] and )( fG  a complex 

number contains both magnitude and phase 

angle information in the frequency domain (2-

units of information), it is reasonable to expect that we should be in a position to  

redict atmost 
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then substituting (3) in (1), we get 









1

0

2

)()(
N

n

nt
Nt

m
j

ss
s

s
sentgt

N

mf
G



 









1

0

2

)(
N

n

N

mnj

ss entgt



 

    Note that our choice of frequency is such that the exponential term in (1) is 

independent of st .  The intuition for choosing such f  is that, basically we are 

attempting a transform on discrete samples which may (or) may not have a 

Fig (1) 

 

 



corresponding analog „parent‟ signal. This suggests to us the following discrete 

version of Fourier transform for a discrete sequence  110 ,......,, Nxxx  
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                                (4) 

Our next job should be to come up with inverse transformation. Assuming for 

N-samples 110 .,........., Nxxx  that (4) would be a transformation and if (2) defines 

IFT in continuous domain, in the discrete domain, we can hypothesize 

following inverse transform. 
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Where K is a suitable scaling factor. 

 

Our next job is to verify that (4) and (5) indeed define a transformation pair 

Substituting (4) in (5), we get following expression for right hand side of (5) 
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[Note the use of dummy subscript k ] 

Let us work this expression out in a long hand fashion; for compactness we use 
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In the above expression, for the first row m  is set to zero, for the second row it 

is set to one and for the last row 1 Nm  

Now, grouping terms column wise, we get 
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Note that this jugglery shows that we can interchange the summation order. One 

order indicates row wise and another column wise summation 
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       Our primary task now is to evaluate the expression. 
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Hence, the first case is obvious. 
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Note that we have used the following geometric series expression 
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Thus, RHS in (6) is equal to 
nx

K

N
 

We see that equation (6) defines the inverse transformation if we choose K N ;  

Thus, N-point DFT and IDFT for samples  110 ,....., Nxxx  are defined as follows. 
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Note that in general DFT and inverse DFT can be defined in many ways, each 

only differing in choice of constant 1C  and 2C  

DFTIDFT 
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The constraint in choosing the constraints is that product 
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Choice of 
N

C
2

1   is commonly used in relaying because it simplifies phasor 

estimation. Phasor estimation will be discussed later. We now discuss some 

important properties of DFT. 

 

 

 

 

 



 
This saves a lot of adds. (Note that each add and multiply here is a complex (not 

real) operation.) 
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